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JPL-Table Mountain Facility, California (elev. 2285 m)

- Core participants: 5 tropospheric ozone lidars from TOLNet

- AMOLITE from Environment and Climate Change Canada, PI: K. Strawbridge

- LMOL from NASA Langley Research Center, PI: Tim Berkoff

- TMT from Jet Propulsion Laboratory at TMF, PI: T. Leblanc

- TOPAZ from NOAA-Earth System Research Laboratory, PIs: C. Senff and A. Langford

- TROPOZ from NASA-GSFC, PIs: T. McGee and J. Sullivan

- Other contributors:

- M. Newchurch (Univ. Alabama, Huntsville): Campaign refereeing support

- S. Kuang (Univ. Alabama, Huntsville): Campaign refereeing support

- M. Johnson (NASA AMES): Modeling support

- B. Lefer and J. Kaye (NASA HQ): Campaign funding support

- Measurements and deployment:

- 5 x 50+ hours spread over 7 nights and days  (incl. approx. 20 hours nighttime)

- 18 ECC ozonesondes launched by JPL-TMF group (1 to 6 launches per day)

- 5 x 24/7 surface ozone measurements

- 10+ hours of other lidar measurements from JPL-TMF

(water vapor, stratospheric ozone and temperature, ceilometer)
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First Look: the dirty raw stuff….

All available 30-minutes-long lidar-ozonesonde-coincident profiles:

Coincidence criterion: First 30 minutes of each launch (+/- a few minutes)

➔ The rest of this work will show validation results using these

PRELIMINARY SCOOP DATA ONLY and these coincidences only

Figure shows:

- Geophysical variability

throughout campaign

- Extent of valid range for

the various lidars

- Spread of measurements

- 18 launches but not as

many coincident lidar

profiles due to logistical and

operational constraints

NOTE:

Today: showing only SCOOP

“Level 2” data, i.e., PRELIMINARY!

The validated version (“SCOOP

Level 3”) will come out soon
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Optimizing the comparisons, step 1…

Are all instruments measuring

the same atmosphere at the same time?

➔ Instruments will be compared with each other, but using one-to-one

instrument coincidences in order to maximize comparison statistics

Figure shows example of AMOLITE “Campaign Mean”

profiles against different coincident instruments:

- “Campaign mean” is different whether it is

compared against one instrument or another 

- This combination of operational and geophysical

constraints  should be taken into account when

interpreting  observed discrepancies between

3 or more instruments

Only 7 ECC launches during which

all 5 lidars operated simultaneously



AMS 97th Annual Meeting, 22-26 January 2017, Seattle, WA

JPL
ESRL

UAH

GSFC

LaRC

ECCC

ARC

Optimizing the comparisons, step 2….

Do all instruments have the same capability

to resolve thin vertical structures?

➔ Caveat: the quality of the profiles is NOT optimized for all lidar instruments

(e.g., TMT near-field, details later)

Figure shows SCOOP vertical resolution

- Use NDACC-Standardized recommended definition

(Leblanc et al., Atmos. Meas. Tech., 2016)

- 200-m at the surface, 1.5 km at 12 km a.s.l.

- The actual averaging kernels (AK) are not identical for all

lidars and ECC: they take into account each instrument

sampling resolution (from 3.75 m to 15-m)

➔ For this study, all lidar and ECC data were

processed to yield the same vertical resolution:

The “SCOOP vertical resolution scheme”  
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All coincidences, lidars vs. ozonesonde

One-to-one instrument comparisons composited together against ECC ozonesonde

All instruments:

- Below 10 km: within 5 ppbv or 10% of each other

- A few exceptions above 10 km, due to poor stats (less coincidences)

and possibly geographical mismatch
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This ends our “traditional approach”
to validate the TOLNet lidars

Now, let’s use centralized data processing
for further validation
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Why use Centralized Data Processing?

Several efforts made over the past 5-10 years towards

centralized data processing for lidar networks:

EARLINET (aerosols), NDACC (ozone depletion), GRUAN (climate),

and now TOLNet  (AQ)

Advantages:

Standardized processing

➔ Maximizes comparability (for both products and their uncertainty) 

Robust processing

➔ Facilitates Near-Real-Time delivery of homogeneous network-wide measurements

Alternate to in-house processing

➔ Facilitates identification and separation of instrumental and algorithm errors

Caveats:

Standardized processing

➔ Can lead to non-optimized results if network instruments are too heterogeneous

Centralized processing

➔ Potential to lose traceability if no effort for transparency is made

➔ The rest of this work reports on the first (and preliminary) results from

the TOLNet centralized data processing to compare and validate

the TOLNet lidars
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Data Processing: Centralized vs. in-house

➔ Use of centralized data processing adequate enough to inter-compare the

5 TOLNet lidars’ uncertainty budgets 

Grey-shaded areas: 

Combined

standard

uncertainties

Figures shows

Differences between

centralized and in-house

are within +/-10%

almost everywhere

➔ +/-10% = Quite satisfactory considering the preliminary nature of both

the centralized data processing results and the SCOOP Level 2 data

Preliminary assessment of the centralized data processing using

AMOLITE, LMOL and TMT examples:
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Comparing the uncertainty budgets

Figure shows one example:

- 30-min profile starting on Aug 16 at 0400 UT (nighttime)

- All lidars yield same vertical resolution

- Ozone MR with +/- uncertainty (thin dotted lines) 

➔ Uncertainty budgets for these profiles

will be shown next

With centralized data processing,

uncertainty budgets of all lidars can be compared

on a common basis

Use of NDACC-recommended standardized

uncertainty budget

(Leblanc et al., Atmos. Meas. Tech., 2016) 

16 Aug 2016

0400-0430 UT

From centralized

data processing
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Uncertainty budget, TOPAZ example 

Figure shows:

- 6 uncertainty components

(colored curves)

- Black dash curves show

combined uncertainty 

- 4 different components

have major impact on total

uncertainty, at different

altitudes

TOPAZ example:

➔ Individual uncertainty components will be shown next
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Uncertainty budgets comparison details

Detection noise:

Figure shows:

- Large range of values

- Higher laser rep. rates (LMOL,

TOPAZ) yield lower detection noise

- TMT detection noise uncert.

highest for altitudes below

6 km due to inadequate

SCOOP vertical resolution

applied to near-field low STNR
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Saturation (pile-up):

Figure shows:

- Values remain typically below 5%

- Exception for TMT, reaching 15%

(strong signal optimized for lower

stratosphere)

Uncertainty budgets comparison details (cont.)
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Uncertainty budgets comparison details (cont.)

Ref: Weber, M., et al.: Uncertainty budgets of major ozone absorption cross sections used in UV remote 
sensing applications, Atmos. Meas. Tech., 9, 4459-4470, 10.5194/amt-9-4459-2016, 2016.

Figure shows:

- All lidars in the order of 2%-4%

- 2%-4% is the minimum

uncertainty we should expect

from all instruments

O3 absorption cross-section:
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Rayleigh cross-sections:

Eberhard, W. L.: Correct equations and common approximations for calculating Rayleigh scatter in pure gases 
and mixtures and evaluation of differences, Appl. Opt., 49, 1116-1130, 10.1364/ao.49.001116, 2010.

Uncertainty budgets comparison details (cont.)

Figure shows:

- All lidars: in the order of 1-2 ppbv

- Exception for TMT above 8 km,

in this case due to the use of

a 299/355 nm DIAL pair
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What the figure shows:

- Total uncertainties range

between 2 ppbv/2% and

4 ppbv/10% for all lidars

below 12 km

- Exception is for TMT, with

localized peaks at 5 km and 8 km

- TMT higher uncertainty due to

low STNR in the near-field (5 km),

and inadequate SCOOP vertical

resolution forcing transition to

far-field in a region of strong

signal saturation (8 km)

Total uncertainty,

all 5 lidars:

➔ Present budget also highlights the need to apply instrument-dependent vertical

resolution schemes in order to optimize final product ➔ SCOOP Data Level 3 !...

Total uncertainty

➔ All uncertainty estimates match very well the lidar-lidar and lidar-sonde

differences observed during SCOOP 
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Summary and Perspectives

- SCOOP campaign took place Aug 10-16, 2016

- Objective was to validate the tropospheric ozone measurements of

5 of the 6 TOLNet lidars 

- Campaign was very successful: 5 x 50+ hours, 18 ozonesonde launches

- All preliminary (“Level 2”) lidar data were validated beyond expectation

- Lidar-lidar and lidar-sonde show differences not exceeding 10%

in most cases and at most altitudes below 12 km

- Centralized data processing confirmed that observed differences

remain within all reported uncertainties

- TOLNet is now ready to produce optimized SCOOP Level 3 data, with

nominal vertical resolution, and standardized uncertainty budgets

- “Level 3” data will be publicly available and used for science studies

- TOLNet centralized data processing algorithm development will continue,

in parallel with the refinement of the in-house algorithms
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THANK YOU

Thank you to the 1,000 Firefighters who saved the community of Wrightwood, CA
on the day the SCOOP Campaign was cut short due to the BlueCut Fire Evacuation

© 2016 California Institute of Technology. Government sponsorship acknowledged
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BACK UP SLIDES
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Figure shows:

- All remain below 2%

- Exception for TOPAZ up to 4%

at highest altitudes

Background noise extraction:

Uncertainty budgets comparison (cont.)



AMS 97th Annual Meeting, 22-26 January 2017, Seattle, WA

JPL
ESRL

UAH

GSFC

LaRC

ECCC

ARC

Air number density:

Figure shows:

- Best case scenario: use of sonde

temperature and pressure

- All lidars below 1 ppbv or 0.3%

- Expect estimate to be 4x larger

if using models instead of sonde

Uncertainty budgets comparison (cont.)
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Smooth and unsmoothed profiles

Difference between ECC with and ECC without AKs

provides a measure of additional noise to expect

when vertical resolution is not standardized

➔ With the SCOOP vertical resolution scheme,

we spare ourselves an additional +/-5 ppbv

or +/-10% additional noise in the comparisons

➔ But…

It must be pointed out that any inaccurate

computation of a prescribed resolution

may result in this additional noise
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All-lidars comparisons with ECC ozonesonde

- Only 7 coincidences, at most, with ALL 5 lidars operating simultaneously

- All lidars within +/-10% of ozonesonde

- TROPOZ 10-15% high bias not representative (see next slide)

Typically:

3 to 7 coincidences,

depending on altitude
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Sampling size and representativeness

TROPOZ-ECC differences

show different behavior,

depending on number of

coincidences used

➔ Choosing to compare all datasets against each other is a good thing

only when sampling size is large enough to afford good statistics

Grey-shaded areas: 

Ozonesonde

and lidar

combined

standard

uncertainties
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Red apples and red apples, but only 7 of them

All-lidars and ECC,

exact same times for all

(4-7 coincidences)

Each figure shows all other datasets

with respect to one reference dataset

- Number and times of coincidences 

are identical for all dataset pairs

- Very low number of coincidences 

for altitudes above 10 km

➔ Results above 10 km have a low

degree of significance

(basically = ignore them)
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Application 3: Uncertainty budget (cont.)

Dominant uncertainty sources:

- Ozone cross-sections (dark green)

below 4 km

- Saturation (light green)

at 5 km 

- Detection noise (red)

6 km and above 

Uncertainty budgets for AMOLITE can be directly compared to other lidars

by scrolling through next 4 slides

AMOLITE case:

Black dash curves show

combined total uncertainty
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Application 3: Uncertainty budget (cont.)

Dominant uncertainty sources:

- Ozone cross-sections (dark green)

Mainly below 5 km

- Saturation (light green)

at 6 km 

- Rayleigh extinction

cross-section (blue)

Below 12 km

- Background noise

extraction (yellow)

Above 12 km 

LMOL case:

Black dash curves show

combined total uncertainty
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Application 3: Uncertainty budget (cont.)

Dominant uncertainty sources:

- Detection noise (red)

Almost everywhere near 8 km 

- Saturation (light green)

at 8 km 

Black dash curves show

combined total uncertainty

TMT case:

➔ SCOOP vertical resolution not well suited for TMT. Unlike the other TOLNet lidars,

this lidar is optimized for altitudes above 4 km, nighttime and long-term monitoring

Total uncertainty for TMT is

higher than other lidars,

especially at lower altitudes

- Lower STNR for near-field

- Inadequate “SCOOP resolution”  
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Application 3: Uncertainty budget (cont.)

Dominant uncertainty sources:

- Saturation (light green)

below 4 km 

- Detection noise (red)

Above 4 km 

TROPOZ case:

Black dash curves show

combined total uncertainty


